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ABSTRACT

FAST COMPOUND GRAPH LAYOUT WITH
CONSTRAINT SUPPORT

Hasan Balcı

Ph.D. in Computer Engineering

Advisor: Uğur Doğrusöz

August 2022

Visual analysis of relational data becomes more challenging in today’s world as

the amount of data increases exponentially. Effective visual display of such data

is therefore a key requirement to simplify the analysis process. Compound graphs

present a practical structure for both representing the relational data with vary-

ing levels of groupings or abstractions and managing its complexity. In addition,

a good automatic layout of these graphs lets users understand relationships, un-

cover new insights and find important patterns hidden in the data. To this end, we

introduce a new layout algorithm named fCoSE (fast Compound Spring Embed-

der) for compound graphs with support for user-specified placement constraints.

fCoSE combines the speed of spectral layout with the aesthetics and quality of

force-directed layout while satisfying specified constraints and properly display-

ing compound structures. The algorithm first generates a draft layout with the

help of a spectral approach, then enforces placement constraints by using newly

introduced heuristics and finally polishes the layout via a force-directed layout

algorithm modified to maintain enforced constraints. Our experiments performed

on both real-life and randomly generated graphs verify that fCoSE outperforms

its competitors in terms of both speed and generally accepted graph layout criteria

and is fast enough to be used in interactive applications with small to medium-

sized graphs.

Keywords: Information visualization, graph layout, visual analytics, compound

graphs, constrained layout, spectral graph drawing.
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ÖZET

KISIT DESTEKLİ HIZLI BİLEŞİK ÇİZGE
YERLEŞTİRME

Hasan Balcı

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: Uğur Doğrusöz

Ağustos 2022

Günümüz dünyasında veri miktarı katlanarak arttığı için ilişkisel verilerin görsel

analizi daha zor hale gelmektedir. Bu nedenle, bu tür verilerin etkili görsel

gösterimi, analiz sürecini basitleştirmek için önemli bir gerekliliktir. Bileşik

çizgeler, hem farklı düzeylerde gruplamalar veya soyutlamalar içeren ilişkisel

verileri temsil etmek hem de onların karmaşıklığını yönetmek için pratik bir

yapı sunar. Ek olarak, bu çizgelerin otomatik ve iyi yerleşimi, kullanıcıların

ilişkileri anlamalarına, yeni içgörüler ortaya çıkarmasına ve verilerde gizlenmiş

önemli kalıpları bulmasına olanak tanır. Bu amaçla, bileşik çizgeler için, kullanıcı

tarafından belirlenen yerleştirme kısıtlamalarını da destekleyen fCoSE adlı yeni

bir yerleştirme algoritması sunuyoruz. fCoSE, belirtilen kısıtlamaları karşılarken

ve bileşik yapıları düzgün bir şekilde görüntülerken, izgesel yerleştirmenin hızını,

kuvvet-yönlendirilmiş yerleştirmenin estetiği ve kalitesi ile birleştirir. Önce izgesel

bir yöntem yardımıyla taslak bir yerleşim oluşturur, daha sonra ilk defa sunulan

buluşsal yöntemleri kullanarak yerleştirme kısıtlamalarını sağlar ve son olarak,

sağlanmış olan kısıtlamaları sürdürmek için değiştirilmiş kuvvet-yönlendirilmiş

bir bileşik çizge yerleştirme yöntemi aracılığıyla yerleşimi güzelleştirir. Hem

gerçek dünya hem de rastgele oluşturulmuş çizgeler üzerinde gerçekleştirilen

deneylerimiz, fCoSE’nin hem hız hem de genel kabul görmüş çizge yerleşim kriter-

leri açısından rakiplerini geride bıraktığını ve küçük ila orta ölçekli çizgeleri

destekleyen etkileşimli uygulamalarda kullanılabilecek kadar hızlı olduğunu

göstermektedir.

Anahtar sözcükler : Bilgi görselleştirme, çizge yerleştirme, görsel analiz, bileşik

çizgeler, kısıtlı yerleştirme, izgesel çizge yerleştirme.
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Chapter 1

Introduction

1.1 Motivation

As the data generated increases exponentially in today’s world, it becomes more

challenging to derive the necessary insights from the data. Therefore, converting

data into a comprehensible form is a key necessity to make it valuable. It is known

that visually representing data makes it more understandable [12]. The field of

information visualization comes into play at this point. It is the practice of rep-

resenting data in a meaningful and visual way so that users can easily understand

it. Information visualization comes in different flavors such as chart, histogram,

cartogram, heatmap, and graph, each suitable for representing a specific type of

data. If data elements contain relational connections among them, as with most

real-world data, then they can be visualized with graphs, where data elements are

represented with nodes and relations between them are represented with edges.

Graph visualization is used in numerous domains from biological pathways to

social networks and architecture diagrams (Figure 1.1 through Figure 1.3).

Sometimes, relational data may also contain nesting relationships as in Fig-

ure 1.1 and Figure 1.3. Compound graphs [8] are very useful to both represent

such data and manage its complexity with their sophisticated structures.
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Figure 1.1: A sample biological pathway - neuronal muscle signaling [1]

Figure 1.2: A sample social network of Twitter followers [2]
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Figure 1.3: Architecture diagram of AWS Perspective, a visualization tool for
cloud workloads. [3]

An important requirement in visually representing relational data via graphs

is the arrangements of nodes and edges, i.e. the layout of the graph. A good

layout is important since a poor one may mislead the user and manual layout

adjustments can take up to 25% of a typical user’s time [13]. The quality of

the layout is generally decided by some commonly accepted graph layout criteria

proposing metrics such as the number of edge crossings, average edge length and

maximization of the symmetry. Even though layout algorithms are free to arrange

graph elements to optimize these metrics, some domains may additionally require

user-specified constraints to be applied on the layout (Figure 1.4 and Figure 1.5).

There have been numerous work done on graph layout [14]; however, the num-

ber of studies that focus on both compound graphs and layout constraints is

very limited. The existing ones suffer from various weaknesses such as insuffi-

cient support for compound structures, ignoring varying node dimensions or high

computational cost which are important for most real-life applications. In this

thesis, we present a new graph layout algorithm named fCoSE to overcome these

deficiencies of existing algorithms.
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Figure 1.4: A sample layout of a dependency graph that positions nodes
(JavaScript files) from left to right based on their dependency relationships and
vertically aligns those at the same level [4]

Figure 1.5: A sample layout of a wireless sensor network in which the anchor
nodes are positioned to their predefined locations while the other nodes are laid
out based on the measured inter-sensor distances [5]

4



1.2 Contribution

fCoSE proposes a new approach fully capable of handling compound graphs,

supports a fairly rich set of user-specified placement constraints and runs fast

enough on small to medium-sized graphs. This makes fCoSE suitable to be used

in interactive visualization tools. It combines the speed of spectral layout with

the aesthetics of force-directed layout, and in this way, it runs up to 2 times

as fast as CoSE [8], which is its base method, and outperforms its competitors

with support for both constraints and compound structures in terms of generally

accepted aesthetic criteria and run time performance. In addition, to the best of

our knowledge, fCoSE is the first algorithm that suggests a heuristic to apply the

spectral layout approach on compound graphs.

The rest of the thesis is organized as follows. Chapter 2 explains some basic

concepts related to graphs, layout algorithms and some mathematical concepts

used in this thesis. Chapter 3 presents a literature review of related concepts.

The details of the fCoSE algorithm are explained in Chapter 4, while Chapter 5

gives an evaluation of the experimental results. Chapter 6 concludes the thesis

with possible future work and the availability of the algorithm.
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Chapter 2

Basics

2.1 Graphs

A graph G = (V,E) is an abstract structure where V is a non-empty set of nodes

(vertices) and E is a set of edges that connect node pairs (u, v) where u, v ∈ V .

The source and target nodes of an edge is said to be adjacent to each other.

A node is incident to an edge if it is either source or target node of that edge.

The number of edges incident upon a node is called the degree d(v) of that node.

Average degree of a graph d(G) = 1
|V |

∑
v∈V d(v) = 2|E|

|V | can be used to decide

how dense that graph is. A graph is called a weighted graph if its edges have

associated numerical values (weights).

A path in a graph is a non-repeating sequence of nodes such that each of

its nodes is connected to the next node in the sequence by an edge. A graph

is connected if there is at least one path between any two nodes, disconnected

otherwise. A special case of a connected graph where any two nodes are connected

by exactly one path is called tree. A tree in which a node is assigned as the root

is a rooted tree.

A graph is directed if its edges have a direction. A path that starts and ends
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at the same node is called cycle. A directed cycle is a cycle in a directed graph

whose all edges are oriented in the same direction. A directed graph with no

directed cycles is called directed acyclic graph (dag). A directed graph is weakly

connected if its undirected version is connected.

A topological sort of a dag G = (V,E) is a linear ordering of nodes in V in

such a way that for each directed edge e = (u, v) ∈ E, u comes before v in the

ordering.

The induced subgraph G[X] = (Vx, Ex) of a graph G = (V,E) is the graph

where Vx ⊂ V and Ex = {(u, v) | u ∈ Vx ∧ v ∈ Vx}.

A compound graph G = (V,E, F ), which is useful for representing graphs with

both inclusion and adjacency relationships, consists of a set of nodes V , a set

of (adjacency) edges E, and a set of inclusion edges F [15]. The inclusion tree

T = (V, F ) is a rooted tree, defined on the set of nodes V and set of inclusion

edges F , which represents the hierarchical structure of a compound graph. It is

assumed that E ∩F = ∅; in other words, a node cannot be connected to one of its

ancestors or descendants by an adjacency edge (Figure 2.1). A leaf node in the

inclusion tree is called simple node, while a non-leaf node that contains a graph

inside is a compound node. A compound node is the parent of the nodes inside

the child graph or subgraph nested within it. An edge e ∈ E is called inter-graph

edge when it connects two vertices from different levels of the inclusion tree, and

intra-graph edge otherwise. Compound nodes are useful structures to represent

data with varying levels of groupings or abstractions and especially to manage

the complexity of such large data through expand-collapse operations [16].

2.2 Graph Layout

Graph layout is the arrangement of the nodes and edges in a graph in order to

achieve a usable, understandable and aesthetic representation of the graph. This

arrangement can be achieved via a function that maps each node to a distinct
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Figure 2.1: An example compound graph G = (V = {a, b, d, e, c1, c2}, E =
{{a, b}, {b, d}, {d, e}}, F = {(c1, a), (c1, b), (c1, d), (c1, c2), (c2, e)}) where c1 and
c2 are the compound nodes and {d, e} is the single inter-graph edge, along with
the corresponding inclusion tree on the right

point in 2D/3D space and each edge to a Jordan curve in the same space where

endpoints correspond to the positions of the respective end nodes of the edge [14].

The quality of a graph layout is a subjective concept; however, there is some

generally accepted criteria that define the aesthetics to achieve a quality layout

[17]. According to these criteria, a good layout displays symmetry, avoids edge

crossings, keeps edge lengths uniform and distributes vertices uniformly. A good

layout algorithm is also expected to take into account any non-uniform node

dimensions to avoid node-node overlaps. It is obvious that a child node is drawn

within the bounding box of its parent compound node in compound graphs.

A layout of a graph is generally produced from scratch by assigning random

positions to nodes initially and then adjusting them accordingly to achieve a good

layout. However, if a user is satisfied with the current positioning of the nodes

and just wants to “tidy them up” by maintaining his/her mental map, then an

incremental layout can be applied by starting the layout from current positions

of the nodes and applying incremental polishing changes.

There are many types of graph layout algorithms such as force-directed, spec-

tral, hierarchical, orthogonal and circular, where some of these algorithms can be

used for general purposes, while others are more appropriate for specific types of

graphs (Figure 2.2). Of special interest in the scope of this thesis are force-directed

and spectral layout algorithms, the first of which can produce aesthetically good

results in both simple and compound graphs, while the other is renowned for its

speed.
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(a) (b)

(c) (d)

Figure 2.2: Sample results of various graph layout algorithms: a) force-directed
layout, b) spectral layout, c) hierarchical layout with orthogonal edges and d)
circular layout [6]
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2.2.1 Force-directed Layout Algorithms

One of the most popular methods in automatic graph layout is the force-directed

layout (aka spring embedders) [7], which is based on the idea of applying physical

analogies to graph drawing. This idea dates back to Eades’ study [18] where nodes

are represented as metal rings that repel each other and edges are represented as

springs that exert forces to the rings on both ends proportional to the deviation

from the “ideal” length. To obtain a layout, nodes are first given random positions

and then the system is released to apply a physical simulation where nodes are

moved based on the total forces acting upon them iteratively. As a consequence

of the repeated iterations, the system reaches a fairly stable state where the total

energy in the system is minimized (Figure 2.3). A few remarks about Eades’

approach are that it calculates repulsion forces only between non-adjacent nodes

and uses a logarithmic formula to calculate spring forces instead of Hooke’s law.

The run time complexity of his approach is O(|V |2 + |E|) per iteration where

O(|V |2) for the calculation of the repulsion forces and O(|E|) for the calculation

of attractive (spring) forces.

Figure 2.3: An illustration of the force-directed approach [7]
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There are two pioneering studies inspired by Eades’ force-directed approach.

Kamada and Kawai [19] use only spring forces between all pairs of nodes by

assuming each node pair is connected with a spring where the ideal lengths of

the springs are calculated based on the graph-theoretical distances between node

pairs. They treat the layout problem as a process of reducing the total energy of

a system which is achieved by finding a new location for nodes in each iteration

by solving partial differential equations.

Fruchterman and Reingold [20], on the other hand, mainly follow Eades’ ap-

proach and make improvements on it. They apply repulsion forces between every

pair of nodes and use a formula for spring forces that resembles Hooke’s law. In

addition, their algorithm tries to achieve an even distribution of the nodes on the

drawing canvas. The equations used by Fruchterman and Reingold for repulsion

and attractive forces are as follows respectively:

fr(d) = −k2/d

fa(d) = d2/k

where d is the Euclidean distance between node pairs and k is a constant that

represents the ideal distance desired between nodes and calculated as

k = C

√
area

|V |

where area is the area of drawing canvas, C is an experimentally found constant

and |V | is the number of nodes. They use a simulated annealing approach to

reduce the energy of the system where the system starts with a high temperature

and as the nodes move around in each iteration, the temperature of the system

starts to cool down. After repeated iterations, the system reaches (or is forced to

reach) a stable state and movement of the nodes finally stops.

Furthermore, Fruchterman and Reingold suggest a heuristic called grid variant

to decrease the run time complexity of each iteration from O(|V |2 + |E|) to

O(|V | + |E|). This heuristic is based on the observation that repulsion forces

produced between node pairs that are far away from each other have a negligible

effect on the system. In the grid variant approach, the drawing area is divided
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into a grid of squares and each node is placed in a grid square based on its position

at each iteration. During the calculation of repulsive forces, only the nodes in

the same square and neighboring squares of a node are considered. Since the

algorithm tries to spread the nodes homogeneously by applying repulsion and

attractive forces, in any iteration, the number of nodes in neighbor squares will

be almost the same and relatively very small compared to the total number of

nodes. Therefore, if the number of nodes in neighbor squares is considered to

be constant, the complexity of the repulsive force calculation reduces to O(|V |)
which makes the overall run time complexity O(|V |+ |E|) per iteration.

2.2.1.1 Compound Spring Embedder (CoSE)

The CoSE algorithm [8] extends the force-directed model of Fruchterman and

Reingold [20]. The main idea is similar in the sense that nodes are represented

as electrically-charged particles that repel each other and edges are represented

as springs that exert forces on the end nodes. CoSE adopts some important

extensions on top of this force model to handle the layout of compound graphs.

CoSE represents a compound node as an “elastic cart” that can move freely

in orthogonal directions, stretching its boundaries based on the movements of

the nodes in its child graph (Figure 2.4). Unlike earlier force-directed models

considering nodes as points or assuming that they have identical node dimensions

and calculating distances between node pairs or the length of springs between two

adjacent nodes as the distance between two node centers, CoSE uses the minimal

Euclidean distance between the two nodes’ boundaries in force calculations to

both avoid node-node overlaps and support non-uniform node dimensions.

CoSE considers ideal edge lengths of intra-graph edges to be equal, while the

ideal edge lengths of inter-graph edges that are used in spring force calculations

are determined with a heuristic based on the depths of the edge’s end nodes from

their common ancestors in the inclusion tree.

In terms of force calculations, CoSE also adopts the grid variant heuristic of
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Figure 2.4: A sample compound graph (left) and its corresponding physical model
used by CoSE (right) where the nodes are replaced with charged particles and the
edges are replaced with springs while the compound nodes are like elastic carts
that carry the nodes inside [8]

Fruchterman and Reingold to reduce its repulsion force calculation time. For the

sake of simplicity and efficiency in the calculations, repulsion forces are calculated

only between node pairs that are in the same graph. Additionally, CoSE intro-

duces the gravitational forces, which are relatively weaker when compared to the

repulsion and spring forces, to keep disconnected components in a graph together

where such components are pulled towards the barycenter of the corresponding

graph. Overall, CoSE has run time complexity of O(|V |+ |E|) per iteration.

2.2.2 Spectral Layout Algorithms

The spectral layout approach is a class of graph layout algorithms that is based on

the spectral decomposition (also called eigendecomposition) of graph-related ma-

trices such as adjacency, Laplacian and graph-theoretical distance matrices [21].

The approach aims to utilize eigenvectors and eigenvalues computed from these

matrices to find a positioning for the nodes.
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These layout algorithms have two main advantages in terms of graph lay-

out [22]. First, they provide analytical and exact solutions while almost all other

formulations result in an NP-hard problem, which can only be solved with approx-

imation. The second advantage is the computation speed of these approaches.

Despite these advantages, spectral approaches are not commonly used in the

graph layout, because they are devoid of aesthetic concerns. For example, these

approaches cannot differentiate two nodes that have the same graph-theoretical

distance to all other nodes and position them in the same location. Moreover,

these algorithms consider nodes as points and do not support non-uniform node

dimensions, which are widely used in real-life drawings and therefore yield node-

node overlaps in that case.

In the scope of this thesis, we will take a close look at one of the well-known

spectral approaches which is Classical Multidimensional Scaling (CMDS) [9].

2.2.2.1 Classical Multidimensional Scaling (CMDS)

The first CMDS algorithm was developed by Torgerson [23]; thus, it is also known

as Torgerson scaling. The basic idea of CMDS is to find the coordinates that

explain distances between objects [9]. More technically, given a distance matrix

D of the graph, which is constructed from the graph-theoretical distances between

all pairs of nodes, CMDS aims to find a mapping of the nodes in a d-dimensional

space by preserving the graph-theoretical distances between nodes as much as

possible. Assume X is the matrix of the final coordinates of the nodes in d

dimensions. The scalar product matrix, B = XXT , can be calculated by double-

centering the squared distance matrix:

B = −1

2
JLJ (2.1)

where J is the centering matrix and L = D2. Then, the coordinate matrix X can

be obtained from the d largest positive eigenvalues λ+ and their corresponding

eigenvectors Q+ of matrix B:

X = Q+

√
λ+ (2.2)
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The calculation of λ+ and Q+ from B can be performed by a method called power

iteration which is used to calculate dominant eigenvalues and eigenvectors of a

matrix.

The computation of the distance matrix D and hence L takes O(|V ||E|) time

by using a Breadth-First-Search (BFS). It takes Θ(|V |2) time for the construction

of B and another O(|V |2) time for the power iteration method which makes the

overall run time of the operation quadratic. There exist a few studies [24][21][25]

that aim to reduce this time complexity to linear time. Among them, Civril et

al. [24] suggest a sampling-based approximation approach for the computation

of L. Instead of running BFS from each node to compute the distances between

every pair of nodes, they select a constant c number of sample nodes and run

BFS only from those. By squaring each distance value computed, they obtain an

n × c matrix C that contains the squared distances between each sample node

and all other nodes. Then, they approximate the L matrix by multiplying three

smaller matrices

L ≈ CΦ+CT (2.3)

where Φ is the c × c intersection matrix of C and CT , and Φ+ is the pseudo-

inverse of Φ. With this approximation, they reduce the computation of the final

coordinates X to linear time in the number of nodes and edges.

2.3 Layout Constraints

Layout constraints are generally divided into two categories, soft and hard con-

straints [26]. Soft constraints are also known as optimization constraints and

they aim to optimize metrics from generally accepted aesthetic criteria such as

the number of node-node overlaps and average edge length. Optimization of each

such metric is an NP-hard problem [14]; hence it is not expected for layout algo-

rithms to satisfy these constraints, instead they use some heuristics to keep these

metrics in acceptable values. Soft constraints are generally used while evaluating

the visual quality of a layout.
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Hard constraints, on the other hand, are given as user input and expected

to be satisfied by the layout algorithms. These constraints include but are not

limited to placement constraints defined on nodes such as assigning a node to a

fixed position or requiring alignment or relative placement of a group of nodes,

styling constraints such as drawing edges only in polylines or in orthogonal form

and port constraints such as restricting edges to be connected to certain ports.

In the scope of this thesis, we use the number of node-node overlaps, edge-

edge crossings and node-edge crossings, average edge length and total area as the

soft constraints to evaluate the quality of the layout algorithms. We also focus

on three hard constraints related to node placement; fixed node, alignment and

relative placement constraints whose details are given in Section 4. We will call

hard constraints simply constraints in the rest of this thesis.

2.4 Orthogonal Procrustes Problem

The Procrustes problem is a matrix approximation problem in linear algebra that

aims to find a transformation matrix to map a source configuration of a set of

points into a target configuration as closely as possible. Unsurprisingly, it gets

its name from a bandit in Greek mythology who tries to fit his victims into a

bed either scratching their limbs or cutting them off. In the orthogonal version,

transformation is restricted to only rotations and reflections (Chapter 20 of [9]).

The orthogonal Procrustes problem can be solved as follows. Let A and B be

n× 2 matrices keeping the centralized coordinates (in x and y axes) in the target

and source configuration of the n points, respectively. Also, let PΣQT be the sin-

gular value decomposition (SVD) of ATB. Then, the orthogonal transformation

matrix that maps source configuration into the target one can be calculated with

T = QP T .

For example, in Figure 2.5 we see two rectangles A and B with the following
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Figure 2.5: Some steps used by an orthogonal transformation to fit rectangle B
to rectangle A [9]

configurations:

A =


1 2

−1 2

−1 −2
1 −2

B =


−1.866 1.232

−0.134 2.232

1.866 1.232

0.134 −2.232


To map rectangle B into rectangle A as closely as possible by using only rotations

and reflections, we first calculate ATB.

ATB =

[
1 −1 −1 1

2 2 −2 −2

]
−1.866 1.232

−0.134 2.232

1.866 1.232

0.134 −2.232

 =

[
−3.464 −2
−8 13.856

]

17



Then SVD of ATB is

PΣQT =

[
1 0

0 1

][
4 0

0 16

][
−0.866 −0.5
−0.5 0.866

]

Finally, we can obtain T by

T = QP T =

[
−0.866 −0.5
−0.5 0.866

][
1 0

0 1

]
=

[
−0.866 −0.5
−0.5 0.866

]

T is the transformation matrix that maps B into A, but what T does to B?

From Figure 2.5, we can see that it first reflects B on the vertical axis and

then rotates it 30◦ counterclockwise. We can also see that result by multiplying

corresponding reflection and rotation matrices:

T = UR =

[
−1 0

0 1

][
0.866 0.5

−0.5 0.866

]
=

[
−0.866 −0.5
−0.5 0.866

]

where U is the reflection matrix for a reflection on y-axis and R is the rotation

matrix for a rotation by 30◦ counterclockwise.
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Chapter 3

Related Work

Force-directed layout approaches are intuitive and easy to understand and pro-

gram [7]. Therefore, a lot of studies have been done in this field since the stud-

ies of Eades [18], Kamada and Kawai [19] and Fruchterman and Reingold [20],

whose details are given in Section 2.2.1, both to improve their performance

and to adopt and use them for field-specific purposes. Some methods used in

performance improvement include but are not limited to CPU/GPU accelera-

tion/parallelization [27][28][29], which mainly aims for the force calculations to

be done in parallel, and applying multilevel scaling approach [30][31][32] where

the graph is first recursively coarsened by grouping its nodes into clusters until ob-

taining a trivial one and then the coarsest graph is extended again by optimizing

the layout each time until ending with the original graph. Force-directed layouts

are also adopted to be used in many applications such as visualizing clustered

graphs [33] and biological pathways [34]. More studies on force-directed layout

and their details can be found in Chapter 12 of [35] and a recent survey [36].

On the other hand, the number of studies on the layout of compound graphs

is limited probably because of their distinctive and relatively complex structures,

which require handling various levels of nesting, inter-graph edges and so on.

These studies generally suffer from varying weaknesses in quality together with

poor run time complexity. Sugiyama and Misue [37], Sander [38] and Eades et
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al. [39] study the layout of directed hierarchical graphs with compound structures,

in which the hierarchy between nodes is enforced via edge directions. These stud-

ies, however, do not perform well when applied to undirected graphs. Bertault

and Miller [40] and Didimo and Montecchiani [41] aim specifically for undirected

graphs and use a top-down or bottom-up approach on the inclusion tree of com-

pound graphs. The drawback of these approaches is that they do not handle

inter-graph edges properly, yielding long and poorly routed such edges. The rest

of the studies on compound graph layout has some weaknesses such as supporting

only one level of nesting [42][43] and not allowing edges to be connected directly

to compound nodes [44], significantly limiting the type of compound graphs.

The CoSE algorithm [8] whose details are given in Section 2.2.1.1, however,

provides full support for compound graphs by handling compound structures

properly, allowing an arbitrary number of nesting levels and avoiding node-node

overlaps etc. However, it offers a mediocre performance in terms of speed with a

run time complexity O(k · (|V |+ |E|)) by using the grid variant method in [20],

where k is the number of iterations estimated to be O(|V |), which can be consid-

ered slow for especially medium size graphs that are commonly used in interactive

visualization tools.

There has been also limited work done on spectral layout algorithms because

of their limitation on producing aesthetically pleasing layouts for real-life graphs.

Even though they offer a fast approach to graph layout, they cannot handle non-

uniform node dimensions which yields node-node overlaps and makes them not

applicable for compound graphs. Recall that the spectral methods construct the

layout using the eigenvectors and eigenvalues of the certain matrices associated

with the graph. One of the first studies on the spectral layout is by Hall [45]

who uses eigenvectors of the Laplacian matrix. Similarly, Koren et al. [46] and

Koren [22] offer algorithms that use eigendecomposition of the Laplacian matrix.

Harel and Koren [47] first lay out the graph in a high-dimensional environment

by using graph-theoretical distances and then project the high-dimensional draw-

ing into 2-dimensions by applying principal component analysis (PCA). Besides

these, one of the common techniques used in spectral graph drawing is Classi-

cal Multidimensional Scaling (CMDS) whose details are given in Section 2.2.2.1.
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While the first algorithm proposed by Torgerson [23] has a quadratic time com-

plexity, [24], [21] and [25] propose approximations that run in linear time. From

those, we use [24] by Civril et al. in our study because it runs slightly faster and

produces more quality layouts according to our observations.

While many layout algorithms including CoSE aim to achieve good layouts

in terms of one or more of the soft constraints by using heuristic approaches,

there are also studies that explicitly focus on the optimization of such con-

straints [48][49][50] by either modifying the force model or defining cost func-

tions in the stress majorization method based on such constraints. On the other

hand, the first attempt on satisfying hard constraints (simply constraints) was

by Böhringer and Paulisch [51] who try to enforce some placement constraints

on nodes by modifying the layered drawing algorithm of Sugiyama et al. [52].

He and Marriot [53] achieve separation constraints by extending Kamada and

Kawai stress model [19] and using an active-set method to solve constrained op-

timization problems; however, their algorithm scale only to small graphs due

to inefficient solvers. Studies by Ryall et al. [54], Wang & Miyamoto [42] and

Didimo et al. [55] use varying heuristics such as adding dummy nodes and defin-

ing extra springs between nodes to modify and manipulate force-directed model

for constraint support.

CoLa (Constraint-based Layout) is the most well-known constrained layout al-

gorithm in the literature which is a cumulative result of a few studies [56][57][58].

It uses an iterative gradient-projection algorithm that utilizes either stress ma-

jorization or force-directed model. In each iteration, each node is first positioned

based on a calculated steepest descent vector and then the nodes with constraints

are projected to the appropriate positions that satisfy constraints. Both move-

ment operations aim to decrease either stress or the energy of the system. CoLa

is able to support a wide range of constraints at the cost of quadratic run time

complexity. Moreover, CoLa utilizes constraints to support compound graphs

and avoid node-node overlaps. They achieve this by defining relative placement

constraints between all node pairs and between the boundaries of the compound

nodes and simple nodes which yields in a quadratic number of constraints. This
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approach further increases its already high run time complexity and makes it un-

suitable to be applied to medium-sized graphs. A recent study by Wang et al. [48],

on the other hand, proposes an approach that improves the stress majorization

method by reformulating its stress function to support more constraint types (in-

cluding some soft constraints) than CoLa supports. They present a GPU-based

implementation for their algorithm that outperforms CoLa while their CPU-based

implementation generates a comparable performance.

All in all, when we evaluated the studies done so far on compound graphs

and constrained layout, we can infer that there is no layout algorithm that both

runs fast enough to be applied on small to medium-sized graphs and supports

non-uniform node dimensions, compound structures and placement constraints

commonly used in real-life applications. Here, we present such an algorithm

named fCoSE to fill this void.
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Chapter 4

Algorithm

In this chapter, we present our fCoSE layout algorithm in detail by first intro-

ducing the constraint types it supports, then explaining the main phases of the

algorithm in depth and lastly discussing its run time complexity.

fCoSE supports three types of layout constraints that are commonly used in

real-life graphs:

• Fixed node constraint: In this constraint type, the user may provide

desired (aka anchor) positions for a set of nodes, which we call fixed nodes,

as input to the algorithm. This is especially useful if the user has previously

appointed positions for some nodes but wants other nodes to be positioned

by the layout algorithm appropriately and freely. We denote a node a with

a fixed node constraint at anchor position (x, y) as “a†[x, y]” and the set

of fixed node constraints as Cf . The algorithm is expected to produce a

layout with the fixed node a positioned exactly at (x, y).

• Alignment constraint: The user sometimes may want to align a set of

nodes vertically or horizontally for practical reasons such as to show that

they are on the same level or to keep them in an order to better represent

a sequence. Hence, the algorithm aims to align the centers of two or more

nodes vertically or horizontally with this constraint type. We denote the
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vertical alignment of nodes a, b, c as “a | b | c”, horizontal alignment of

them as “a− b− c” and the set of alignment constraints as Ca. The user is

allowed to define more than one constraint in each direction. Moreover, a

node can be a part of two constraints defined in different directions, but not

in the same direction. In such cases where a node is part of two constraints

defined in the same direction, those constraints should be combined into one

constraint (e.g., “a−b−c” as opposed to “a−b” and “b−c” as two separate

constraints). We should note that both of these relations are transitive and

reflexive.

• Relative placement constraint: This constraint type allows the user

to position a node relative to another one by a certain minimum distance

between them in either vertical or horizontal direction. This constraint

type is useful to form an ordering between nodes or in cases where the

relative positioning of nodes makes sense. If node a will be positioned to

the left of (above) node b by at least x > 0 units, we denote it as “a <[x] b”

(“a ∧[x] b”). If x value is not specified, then the algorithm assumes a

minimum separation amount between nodes. We also denote the set of

relative placement constraints as Cr. A node can get involved in multiple

relative placement constraints in either direction. We should note that both

of these relations are transitive and irreflexive.

We should also note that these constraints can be specified only on simple

nodes and each simple node can be part of multiple constraint types. The algo-

rithm also expects that the user does not specify conflicting constraints such as

a < b and b < a.

The fCoSE algorithm running on a compound graph G = (V,E, F ) with a user-

specified constraint set C = Cf∪Ca∪Cr consists of three main phases (Figure 4.1

and 4.2). In the first phase, a draft layout is obtained by first converting a possibly

disconnected compound graph into a connected simple graph and then applying

a spectral layout algorithm [24] on it.
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Figure 4.1: Algorithm overview of fCoSE. In Phase I, a spectral layout algo-
rithm is applied on the input compound graph to generate a draft layout. Phase
II enforces the user-specified placement constraints on this draft layout after a
transformation step. Finally, a final layout is obtained as a result of Phase III by
polishing the constrained draft layout via a modified CoSE algorithm.
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Figure 4.2: The process of applying fCoSE on a sample compound graph with two
fixed node constraints (n2†[−50, 100], n5†[50,−50]) and one alignment constraint
(n4− n6). (a) After generating a draft layout in Phase I, (b) a transformation is
first applied based on the fixed node constraints (transformed draft layout) and
then (c) all constraints are enforced (constrained draft layout) in Phase II. (d)
The final layout is obtained by applying a modified version of CoSE in Phase III.
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Algorithm 1 The fCoSE Algorithm

function RunLayout(G,Cf , Ca, Cr)
ApplySpectral(G)
if |Cf | > 1 then ▷ use fixed nodes

xformMatrix← CalcXformFixed(G,Cf )
ApplyXform(G, xformMatrix)

else if |Cf | ≤ 1 and |Ca| > 0 then ▷ use alignment

xformMatrix← CalcXformAlignment(G,Ca)
ApplyXform(G, xformMatrix)
if |Cr| > 0 then
ApplyMajorityReflection(G,Cr)

else if |Cf | ≤ 1 and |Ca| = 0 and |Cr| > 0 then ▷ use relative placement

construct dags Dh and Dv from Cr

D ← Dh ∪Dv

Ci = (Vi, Ei)← largest component in D
if |Vi| < |V (D)/2| then
ApplyMajorityReflection(G,Cr)

else
xformMatrix← CalcXformRelative(G,Ci)
ApplyXform(G, xformMatrix)

if |Cf | > 0 then
EnforceConstraintsFixed(G,Cf )

if |Ca| > 0 then
EnforceConstraintsAlignment(G,Cf , Ca)

if |Cr| > 0 then
EnforceConstraintsRelative(G,Cf , Ca, Cr)

totIter ← 0
while totIter < maxIter or !Converged() do
totIter ← totIter + 1
UpdateBounds() ▷ resize compounds

CalcForces()
CalcDisplacements()
if |Cf ∪ Ca ∪ Cr| > 0 then
AdjustDisplacements()

MoveNodes()
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The second phase first transforms the draft layout so that its orientation bet-

ter complies with the user-specified constraint set (transformed draft layout) and

then enforces the constraints in order to obtain a constrained draft layout. In the

last phase of the algorithm, a modified version of CoSE [8] is applied to polish

the constrained draft layout by taking node dimensions into account and elimi-

nating the node-node overlaps disregarded so far while maintaining the enforced

constraints. As a result, the algorithm achieves a final layout where compound

structures are respected and user-specified constraints are satisfied. Algorithm 1

summarizes the overall structure of the algorithm.

4.1 Phase I: Obtaining Draft Layout

Spectral layout algorithms are based on the adjacency or the graph-theoretical

distance of the nodes to each other which prevents them to be applied directly

to disconnected or compound graphs. To solve this problem, we propose the

following heuristic. Assuming we have a disconnected compound graph as the

input, we first apply a preprocessing step to connect disconnected components

in the graph together and convert it into a simple graph. After performing the

spectral layout algorithm on the connected simple graph, we finally convert the

graph into a disconnected compound graph again via a postprocessing step and

obtain a draft layout.

4.1.1 Preprocessing Step

We convert a disconnected graph into a connected one by using “dummy nodes”

that tie its components together. To achieve this, we first perform a Breadth-

First-Search (BFS) algorithm in the root graph to identify the disconnected com-

ponents and connect them to a dummy node. Two points to note here are: First,

the BFS algorithm we use is a specialized one that considers the compound node

structure where upon reaching a particular node, if it is a compound node, we

also visit all nodes in its nested child graph. Similarly, if it is a child node, we also
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visit all its parent/sibling nodes. For example, in Figure 4.3a, although the com-

pound node c1 is not directly adjacent with n2 or compound node c0, we consider

them as connected since a child node n3 of c1 is adjacent with n2 and c1 itself is

adjacent with a child node n1 of c0. Therefore, upon reaching c1, we should also

be visiting n2 and c0 on our traversal together with some other nodes. Secondly,

we select the node with the minimum degree from each component to connect it

to a dedicated dummy node to keep the node degrees as homogeneous as possi-

ble (Figure 4.3b). After we handle the root graph by considering these points,

we need to apply the same procedure for each child graph inside the compound

nodes because the graph might become disconnected once we remove compound

structures as described below (Figure 4.3c).

We convert a compound graph into a simple one by assigning the mission of

each compound node to a simple node inside that compound node. For this

purpose, we first select a simple node with minimum degree (again to keep node

degrees homogeneous after conversion) inside a compound node, connect the inci-

dent edges of the compound node to the selected node and remove the compound

node temporarily (Figure 4.3d). As a result of this process, we obtain a connected

simple graph which is ready to apply a spectral layout algorithm on.

4.1.2 Applying Spectral Layout Algorithm

Having a connected and simple graph, we now apply a linear time CMDS algo-

rithm proposed by Civril et al. [24] whose details are explained in Section 2.2.2.1.

As noted before, as a spectral layout approach, this algorithm does not con-

sider non-uniform node dimensions and places two nodes with the same graph-

theoretical distance to all other nodes on top of each other potentially leading

to many node-node overlaps. However, it helps to generate a quick draft layout

that nicely represents the skeleton of the graph.

28



c1 c2

c0

n3

n4

n5

n1n0

n2

(a)

c1 c2

c0

n3

n4

n5

n1n0

n2
d0

(b)

c1 c2

c0

n3

n4

n5

n1n0

n2
d0

d1

(c)

n3

n4

n5

n1n0

n2
d0

d1

(d)

Figure 4.3: (a) Given a sample disconnected compound graph, (b) the prepro-
cessing step first connects the disconnected components shown inside the red
rounded rectangles in the root graph via dummy node d0. (c) Dummy node d1
then connects the components inside the child graph of c2. (d) As there are no
remaining components to connect, the compound graph is finally converted to a
simple graph by selecting a representative node for each compound node. Nodes
n0, n3 and n5 with red borders are the representative simple nodes selected for
compound nodes c0, c1 and c2, respectively and the edges in red indicate the
edges previously connected to compound nodes.

4.1.3 Postprocessing Step

In the postprocessing step, we finalize the construction of a draft layout simply

by bringing the temporarily removed compound nodes back by computing their

positions and dimensions using the bounding boxes of their newly positioned child

nodes and removing the dummy nodes that we inserted to connect disconnected

components.
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4.2 Phase II: Satisfying Constraints

In this phase, we satisfy the user-specified placement constraints on top of the

draft layout that is the result of Phase I. To achieve this, we first apply a trans-

formation on the draft layout by performing rotation and/or reflection to better

align it with a subset of constrained nodes and obtain a transformed draft layout.

We then process and enforce the constraints on the transformed draft layout in

order, yielding a constrained draft layout where all constraints are satisfied.

4.2.1 Transformation of Draft Layout

The aim of the transformation step is to adjust the orientation of the graph in

such a way that it becomes more compatible with the user-specified placement

constraints. In this way, the movement of the constrained nodes during the

next step where we process the constraints to enforce them is minimized and the

structure of the draft layout is protected as much as possible. If we directly enforce

the constraints to the draft layout, this may cause drastic changes in the node

positions and emergence of the long edges and eventually reduce the quality of the

constrained draft layout and hence the quality of the final layout. To provide a

better insight, Figure 4.4 exemplifies the transformation step. Notice how directly

enforcing fixed nodes may cause long edges (Figure 4.4b), whereas, we obtain a

better quality constrained draft layout with the help of the transformation step

(Figure 4.4c).

We achieve this transformation by using the solution to the famous orthogonal

Procrustes problem, whose details are given in Section 2.4, that aims to map a

source configuration to a target one by calculating an orthogonal transformation

matrix. This solution exactly serves our purpose by restricting the transformation

to only rotations and reflections, because we only want to change the orientation

of the draft layout without distorting it.

To apply this solution in our case, we first decide the nodes that will be used
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Figure 4.4: (a) A sample draft layout with two fixed node constraints
n0†[−150, 50] and n6†[150,−50] (b) Constrained draft layout obtained by skip-
ping the transformation step and (c) by applying a transformation step that
rotates the draft layout by 163.5◦ clockwise

in the calculation of the transformation matrix together with their source and

target configurations, and then we apply the transformation matrix to the whole

graph. Because we aim to adjust the orientation of the draft layout according to

the user-specified constraints, we can select a proper subset of the constrained

nodes for this purpose. The source configuration of the selected nodes comes

from the draft layout, while the construction of the target configuration is rather

complicated and changes according to the chosen constraint type(s). The choice of

the constraint type(s) and the actual set of nodes, together with the construction

of the target configuration are done as follows.
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Figure 4.5: (a) Part of a draft layout along with the target configuration formed
by anchor positions on the fixed nodes n0, n1 and n2 (b) The corresponding
transformed draft layout which first reflects the draft layout on the y-axis and
then rotates it by 6◦ counterclockwise

If there is more than one fixed node constraint (|Cf | > 1), we select the fixed

nodes for the transformation, as the fixed node constraints are the most strict

ones in terms of positioning. The target configuration is then formed directly from

the positions specified by the user for these nodes (anchor positions). Figure 4.5

illustrates a sample scenario with three fixed nodes. The positions of these nodes

in the draft layout form the source configuration, while the anchors show the

anchor positions that form the target configuration (Figure 4.5a). Please see that

the transformed draft layout obtained by applying the transformation matrix

formed from these configurations is more compatible with the anchor positions

(Figure 4.5b).

If the number of fixed node constraints is insufficient to define a target config-

uration (|Cf | ≤ 1), and there exist any alignment constraints (|Ca| > 0), then we

use all nodes involved in this constraint type for the transformation. In this case,

the target configuration is formed by aligning the nodes in each alignment con-

straint on their average position in the respective direction. Figure 4.6a shows

a draft layout with two alignment constraints (one in each direction). In Fig-

ure 4.6b, nodes in each alignment constraint are moved to their average positions

to form the target configuration and the resulting transformed draft layout is

shown in Figure 4.6c. Here, we can also see how the transformation reduces the

total amount of node movement required to enforce the alignment constraints in
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Figure 4.6: (a) Part of a draft layout with alignment constraints n0 | n1 | n2
and n3 − n4 (b) Black arrows show the required movement for the constrained
nodes to be aligned in the corresponding average coordinate to form the target
configuration. (c) The transformation step based on the alignment constraints
rotates the draft layout by 44.5◦ clockwise. (d) Additional process of relative
placement constraints n1 < n3, n2 < n4, n0∧n1 and n2∧n4 on the transformed
draft layout in (c) reflects the graph on y-axis.

the next step by simply comparing the total lengths of dark line segments with

arrows in Figure 4.6b (if we enforce without transformation) and Figure 4.6c

(with transformation).

At this point, after we transformed the draft layout based on the alignment

constraints, we check whether we can make it more compatible with the relative

placement constraints as well. If there are any relative placement constraints

(|Cr| > 0), we additionally apply a majority-based reflection on the graph by

taking these constraints into account, if required, as follows. We evaluate the

relative placement constraints defined along the x-axis (y-axis) one by one, and if

the two involved nodes are not on the correct side of each other as required by the
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constraint, we consider that this constraint is violated. After the evaluation of all

constraints defined along the x-axis (y-axis), if the majority of these constraints

are violated, we reflect the graph on y-axis (x-axis). To illustrate this with an

example, assume that the graph in Figure 4.6a has also the following relative

placement constraints: {n1 < n3, n2 < n4, n0 ∧ n1, n2 ∧ n4}. If we process

each constraint based on the positions in the current transformed draft layout

(Figure 4.6c) as explained, we see that both constraints defined along the x-

axis are violated, while one of the two constraints is violated on y-axis. In this

case, we reflect the graph only on the y-axis (Figure 4.6d). With this additional

action, the orientation of the graph becomes more compatible with the relative

placement constraints, reducing the number of violated constraints to one as

opposed to three, while the effect of the earlier transformation based on the

alignment constraints is also protected as this action involves only reflections.

If the number of both fixed node and alignment constraints is not sufficient to

apply a transformation (|Cf | ≤ 1 and |Ca| = 0), we base the transformation only

on the relative placement constraints, if they exist (|Cr| > 0). To achieve this,

we first form two dependency dags Dh = (V h, Eh) and Dv = (V v, Ev), one for

each direction, by using the relative placement constraints. Here,

V h = {v | (u < v) ∈ Cr ∨ (v < u) ∈ Cr} and

Eh = {e = (u, v) ∧ e.w = x | (u < [x] v) ∈ Cr},

where e.w denotes the weight of the edge e. Dv can be formed in the same way.

Please notice here that Eh ∩ Ev = ∅ but V h ∩ V v can be nonempty. The union

of these two dags then constructs the directed dependency graph D = Dh ∪Dv,

which may not be a dag itself.

We then have two choices for the transformation. Assume that Ci = (Vi, Ei)

is the largest (weakly connected) component of D. If |Vi| < |V (D)|/2; in other

words, the largest component is not big enough to direct a transformation, we

apply a majority-based reflection on the draft layout as explained before. Oth-

erwise, we use the nodes in the largest component Ci to configure the target

configuration as follows. Suppose Vi = V h
i ∪ V v

i , where V h
i ⊆ Dh and V v

i ⊆ Dv

correspond to those nodes involved in horizontal and vertical relative placement
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constraints in the component, respectively. Let Dh
i = Dh[V h

i ] and Dv
i = Dv[V v

i ],

both of which are dags as they are subgraphs of dags. For each of these dags,

we first define the nodes with no incoming edges as the source nodes. We then

calculate the longest distances from these source nodes to all other nodes using a

topological order based computation [59]. We finally obtain the target configura-

tion by first aligning the source nodes in their average x (y) coordinate and then

placing the rest of the nodes in the V h
i (V v

i ) to the appropriate x (y) coordinates

by using the previously calculated longest distance of each node from the source

nodes in the x-axis (y-axis). Figure 4.7 shows an example of this approach where

the largest component is used to obtain a target configuration for the transforma-

tion. We can see that the transformation changes the orientation of the graph in

a way that all constrained nodes are on the correct side of each other as required

by the constraints (Figure 4.7d), whereas none of them are on the correct side

initially (Figure 4.7a).

4.2.2 Enforcing Constraints

After we adjust the orientation of the graph based on the user-specified placement

constraints, we now enforce these constraints on the transformed draft layout in

the following order: fixed node, alignment and relative placement. As a result,

we obtain a constrained draft layout in which all constraints are satisfied and

ready to be processed by Phase III.

4.2.2.1 Fixed Node Constraints

The positions of the fixed nodes in the transformed draft layout are highly likely

to be different than the user-specified anchor positions. Therefore, we enforce the

fixed node constraints by simply moving each fixed node to the corresponding

anchor position. However, this movement may affect the overall structure of the

graph drastically by causing long edges or leaving a part of the graph away. To

avoid this, we also need to move the rest of the graph towards the anchor positions
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Figure 4.7: (a) Part of a draft layout for a graph with relative placement con-
straints {n2 ∧[80] n1, n7 ∧[70] n6, n4 <[100] n0, n7 <[70] n4, n8 <[80] n4} (b)
Dependency graph D formed by the nodes involved in these constraints. The
dashed edges represent the constraints defined in the vertical direction while the
solid ones are for those in the horizontal direction. The value on the edge rep-
resents its weight and the value near each node represents its longest distance
from the source nodes. The component on the right is large enough to be used
to construct the target configuration. (c) The target configuration constructed
by appropriately positioning the nodes in the largest component according to the
calculated longest distances (d) Transformed draft layout obtained by a transfor-
mation that rotates the draft layout by 180◦)
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by taking the displacement amount of the fixed nodes into account. We apply

this displacement process as follows.

Let V f = {v | v†(x, y) ∈ Cf} = {v0, v1, . . . , vk}. Also let (xi, yi) be the

coordinates of the fixed node vi in the transformed draft layout and (x′
i, y

′
i) be

the coordinates of the fixed node vi required by the fixed node constraint (Fig-

ure 4.8a). Each fixed node vi is moved by (x′
i − xi) and (y′i − yi) along the x

and y axes, respectively, to enforce the constraint (Figure 4.8b). The average

displacement amounts of fixed nodes are calculated in each direction to decide

the displacement amounts, δx and δy, for the rest of the graph:

δx =

∑k
i=0(x

′
i − xi)

k
and δy =

∑k
i=0(y

′
i − yi)

k
.

The rest of the graph is then moved by (δx, δy) along x and y axes, respectively

(Figure 4.8c).
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Figure 4.8: (a) Transformed draft layout (same as the one in Figure 4.5b) along
with the anchor positions of fixed nodes (b) First, the fixed nodes are moved
to anchor positions. (c) Then, the rest of the graph is moved based on the
displacement of the fixed nodes.
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4.2.2.2 Alignment Constraints

We enforce an alignment constraint by simply aligning the nodes involved in the

constraint to their average x (y) coordinate for vertical (horizontal) alignment

(Figure 4.9). However, if a node in the alignment constraint also has a fixed node

constraint, then other nodes in the constraint should comply with the fixed node.

Hence, we use the corresponding coordinate of the fixed node as the alignment

coordinate. We should, however, note that if there is more than one fixed node in

an alignment constraint, then their corresponding coordinates that will be used

for the alignment should be the same; otherwise, the constraints will conflict with

each other.
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Figure 4.9: (a) Transformed draft layout with two alignment constraints (same
as the one in Figure 4.6c) where the arrows show the actions required to enforce
these constraints (b) Constrained draft layout in which the alignment constraints
are satisfied

4.2.2.3 Relative Placement Constraints

To enforce the relative placement constraints, we again construct dependency

dags, Dh and Dv, as in the transformation step. However, this time the con-

struction and processing of these dags are a bit more sophisticated because we

also need to consider possible fixed node and alignment constraints. For exam-

ple, during the construction of Dh (Dv) we represent the nodes involved in each

vertical (horizontal) alignment constraint with a meta node (i.e., a single merged

node). Moreover, if any of these nodes has a fixed node constraint, then we also

consider the meta node as a fixed node.
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Figure 4.10: Dependency dags (a) Dh and (b) Dv constructed from the relative
placement constraints defined on the graph in Figure 4.7 (c) Constraints defined
in the x-axis are processed by using Dh. The source nodes n7 and n8 are ini-
tially aligned in their average x coordinate and then n4 and n0 are placed at
the calculated longest distances (80 and 180 units, respectively) from the source
nodes. (d) Constraints defined in the y-axis are processed similarly by using the
components in Dh. n1 and n6 are placed to the calculated longest distances (80
and 70 units, respectively) from their corresponding source nodes n2 and n7.

The dags are then processed in order as follows. For each component of Dh,

we first relocate the source nodes to their average x coordinate. Then for the

other nodes, we calculate the longest distances of these nodes to the source nodes

along the x-axis by using their topological ordering as in Section 4.2.1 and place

each node to the appropriate x coordinate. However, if we encounter a fixed

node during this placement, we adjust the x coordinates of the predecessors and

successors of this node accordingly, to satisfy the minimum separation amount

specified by the constraint. After all components ofDh are processed, we continue

with the components of Dv by processing them similarly. In this way, all relative

placement constraints are enforced. Figure 4.10 shows an example that consists

of only relative placement constraints while Algorithm 2 presents all details of

the process.
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Algorithm 2 Enforcing Relative Placement Constraints

function EnforceConstraints(G,Cf , Ca, Cr)
for each dir ∈ {h, v} do
fixedNodes← nodes in Cf

metaToOrgMap← {} ▷ bidirectional map btw meta and original nodes in alignment constraints

M←{mi | ci ∈ Ca ∧ ci.dir ̸= dir} ▷ a meta node for each alignm. set defined in opposite direction

Mf←{mi∈M ∧ ∃(x∈ci.nodes ∧ x∈fixedNodes)}
fixedNodes← fixedNodes ∪Mf

for each mi ∈Mf do ▷ set meta node positions based on average position of nodes represented

mi.currPos(dir)← AveragePos(ci.nodes, dir)

for each mi ∈M do
metaToOrgMap.add(mi, ci.nodes)

Ddir← CalcDAG(Cr, dir,M,metaToOrgMap) ▷ use meta nodes here

EnforceAux(Ddir, fixedNodes,M, dir)

function EnforceAux(Ddir, fixedNodes,M, dir)
for each component C in Ddir do
AlignIndegreeZeroVertices(C, dir) ▷ align zero indegree vertices of C in current direction

for each node v in C do
v.predList← {v}
if v.indegree(dir) = 0 then
queue.enqueue(v)
v.newPos(dir)← v.currPos(dir)

else
v.newPos(dir)← −∞

while ! queue.empty() do
u← queue.dequeue()
for each neigbor v of u where e = (u, v) do
pos← u.newPos(dir) + e.weight
if v.newPos(dir)<pos then ▷ constraint violated

if v ∈ fixedNodes then
v.newPos(dir)← v.currPos(dir)
if v.newPos(dir)<pos then ▷ still violated

discr ← pos− v.newPos(dir)
for each node w ∈ u.predList do
v.newPos(dir)← w.newPos(dir)− discr

else
v.newPos(dir)← pos

v.indegree(dir)← v.indegree(dir)− 1
if v.indegree(dir) = 0 then
queue.enqueue(v)

v.predList← v.predList ∪ {u}
for each node u in C do
if u = mi ∈M then
for each node v ∈ ci.nodes do
v.currPos(dir)← mi.newPos(dir)

else
u.currPos(dir)← u.newPos(dir)
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4.3 Phase III: Polishing Phase

In the last phase, we apply a modified version of the CoSE algorithm on the

constrained draft layout incrementally (starting from the current node positions)

to remove any node-node overlaps, respect the compound structures, and refine

the layout by minimizing the stress of the physical model while maintaining the

satisfied constraints.

The CoSE algorithm does not take the user-specified placement constraints

into account. In each iteration, the algorithm first calculates the displacement

amounts for all nodes based on the applied forces (repulsion, spring and grav-

itational) on the nodes and then moves them according to these displacement

amounts. However, the positioning of the nodes based on this movement strategy

may violate the already established constraints. Hence, we add an intermediate

step between these two operations to maintain the satisfied constraints during it-

erations. This intermediate step adjusts (i.e., limits) the calculated displacement

amounts of the constrained nodes so that none of the constraints are violated at

the end of movements. The details of the intermediate step are as follows:

• First, displacement amounts of fixed nodes are adjusted to 0 along x and y

axes.

• Secondly, we adjust the displacement amounts of the nodes involved in

a vertical (horizontal) alignment constraint to their average displacement

value in x (y) direction. However, if any of these nodes is a fixed node, then

the displacement values of all nodes in the corresponding direction are set

to 0.

• Lastly, for a node that is part of a relative placement constraint, we adjust

its displacement amount in the corresponding direction so that all other

constraints in which this node is involved will not be violated. In other

words, if such a node is also a fixed node or involved in an alignment con-

straint, its displacement amount is first updated in previous stages. Then

we check all relative placement constraints in which this node is involved
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one by one and continue to update the node’s displacement amount to the

maximum value that will not violate any of these constraints.

As a result of the intermediate step, each constrained node can have a displace-

ment amount that is less than or equal to the calculated displacement amount

before. This step does not change the displacement amounts of the unconstrained

nodes. The logic of this intermediate step is similar to the one used in [42].

They behave to the nodes in alignment and relative placement constraints like

there exists a “rigid stick” between these nodes and move them together by the

same amount. We behave similarly to the nodes in alignment constraints, while

the nodes in the relative placement constraints can have different displacement

amounts giving them more freedom. With this modified movement strategy, en-

forced constraints are not violated during the iterations of the CoSE algorithm

and hence they stay satisfied in the final layout.

4.4 Time Complexity

We now present an in-depth time complexity analysis of the fCoSE algorithm.

Phase I is expected to run in O(n+m) time for a compound graph G = (V,E, F ),

where |V | = n and |E| = m. The preprocessing step applied to convert a dis-

connected compound graph into a connected simple graph requires a constant

number of BFS operations to find the disconnected components and the nodes

with the minimum degree, assuming there is a constant number of levels in the in-

clusion tree as in most real-life graphs. The CMDS algorithm proposed by Civril

et al. [24] also works in linear time with respect to the number of nodes and

edges as explained in Section 2.2.2.1. The postprocessing step, lastly, requires a

one-time traversal of all simple nodes in the graph to calculate the new positions

and dimensions of the compound nodes, taking O(n) time as well.

Similarly, Phase II is expected to run in O(n + m) time. The most costly

operations in this phase are the construction and processing of dependency graphs

used when we base the transformation on relative placement constraints and
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during the enforcement of the same type of constraints. These operations require

a constant number of BFS traversals to find the disconnected components and

solution to the longest path problem in a dag. Transformation based on the fixed

node or alignment constraints and the enforcement of these types of constraints

are relatively simple operations which can be done in O(n). The computation

of the transformation matrix which requires the multiplication of matrices with

dimensions 2 × n and n × 2 together with an SVD operation on a 2 × 2 matrix

can also be done in linear time in the number of nodes.

As we apply the modified version of CoSE algorithm incrementally in Phase III,

starting with a low cooling factor thanks to the previously formed draft layout,

the number of iterations it requires reduces significantly. Each iteration of the

original CoSE algorithm takesO(n+m) time. The operations applied to maintain

the fixed node and alignment constraints in the intermediate step we introduce

do not affect the asymptotic complexity of an iteration. The only negative effect

can emerge when each node is involved in O(n) relative placement constraints.

However, because the support of fCoSE for compound nodes and prevention of

node-node overlaps are not based on the constraints as in CoLa that may require

a quadratic number of relative placement constraints in the number of nodes

(on top of those defined by the user), we expect each node to have at most

constant number of relative placement constraints, a reasonable assumption for

user-specified constraints, this keeps the complexity of an iteration to O(n+m).

As a result, while the first two phases of the fCoSE are expected to work in

O(n+m) time, the overall run time of the algorithm depends on the number of

iterations in Phase III where each iteration is also expected to run in O(n +m)

time like CoSE. We expect, however, much fewer iterations when compared to

CoSE as our algorithm starts from a draft layout instead of starting from scratch

with totally random positions.
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Chapter 5

Evaluation

We evaluated the quality and performance of fCoSE by comparing it with CoLa

on a dataset that we constructed from real-life and randomly generated compound

graphs. We chose CoLa for comparison because it is the most similar algorithm

to fCoSE with its support for non-uniform node dimensions, compound structure

with more than one level of nesting and similar constraint types. The most

common way to evaluate a graph layout in terms of quality is to focus on metrics

related to the generally accepted aesthetic criteria. Hence, we compared values

for average edge length, edge crossings, node-node overlaps, node-edge overlaps

and total area metrics. We also made measurements on the execution duration of

both algorithms to evaluate their run time performances. This evaluation process

was repeated on experiment setups constructed with varying ratios of different

constraint types. In addition, we compared the run time performances of fCoSE

and its predecessor CoSE on constraint-free graphs.

5.1 Experiment Setup

We implemented fCoSE in JavaScript programming language as an extension

to Cytoscape.js [60], a graph visualization and analysis library. Other layout
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algorithms that we used for comparison, CoLa and CoSE, are also available as

Cytoscape.js extensions. Hence, we used these three extension libraries and an

ordinary computer with Intel i7-4790 3.60GHz x 4 CPU and 16GB RAM to run

our experiments.

5.2 Dataset

We aim fCoSE to work in small to medium-sized graphs up to several thousand

nodes [61][62] which is the common scale for many interactive applications de-

signed for real-life graphs. The visualization and analysis of larger graphs are

much harder to handle and require complexity management techniques [16] to be

used to reduce the graph size and simplify working with them. To this end, we

used both real-life graphs and two randomly generated compound graph datasets

with 10 to 5000 nodes to evaluate the quality and performance of fCoSE and

compare it with other algorithms, CoLa and CoSE.

The real-life graphs we used can be seen in Figure 5.1 through Figure 5.5.

Because there is no readily available compound graph dataset proposed in the

literature, we generated two new ones by using simple graphs from two different

sources. One of these sources is the Rome graph dataset [63] which is one of

the benchmark datasets used frequently in graph visualization with biconnected,

undirected, and 4-planar graphs and the other one is the Network Repository

website [64] that contains benchmark datasets. The generation of the compound

graph datasets was performed as follows. We first randomly selected 81 graphs

from the Rome dataset (60 of them are small-sized with 10 − 200 nodes and 21

of them are medium-sized with 250 − 5000 nodes) with d(G) ≤ 3 and 10 denser

graphs (5 of them are small-sized with 20−209 nodes and 5 of them are medium-

sized with 530− 4245 nodes) from the Network Repository with 4.3 ≤ d(G) ≤ 7.

This selection process was done to reduce the computation time of the tests by

eliminating some of the graphs that are many of the same size. We then applied

Markov Clustering Algorithm [65] on each selected graph to compute the clusters

within. For half of these clusters selected randomly, we created a compound node
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for each cluster and moved the nodes in the clusters into their corresponding

compound nodes. We repeated the same procedure inside the newly created

compound nodes two more times so that we can generate compound graphs with

an inclusion tree depth up to 3. Please note that a generated compound graph

in this manner can have an inclusion tree depth less than 3 when there are not

enough number of nodes to construct more than one cluster in any branch. This

process, however, creates inter-graph edges whose both ends are simple nodes.

Hence, we lastly changed the source and target nodes of some inter-graph edges

randomly to one of their noncommon ancestors (necessarily compound nodes) in

the inclusion tree so that we obtain connections to some compound nodes as well.

After we finished generating random compound graphs, we added random

constraints to each graph this time. For this purpose, we added fixed node,

alignment, relative placement and hybrid (which includes all constraint types)

constraints to the 25%, 50%, 75% and 100% of all nodes for various test cases

(the only exception to this process is to constrain 100% of the nodes with fixed

node constraints which does not require a layout to be applied). Constraints were

added as follows.

For adding fixed node constraints, we first generated a draft layout of the

graph by using only Phase I of the fCoSE algorithm. Then we randomly selected

a specified portion of the simple nodes and assigned an anchor position to each

one which is a random position near (up to ±30 units in both x and y coordinates)

the one calculated in the draft layout. The reason why we use a draft layout to

generate anchor positions is that we want them to be in line with the overall struc-

ture of the graph, whereas a totally random generation of those positions causes

a tangled layout with unnecessarily long edges. We added alignment constraints

by simply matching each node from the randomly selected portion of all simple

nodes with its random adjacent neighbor either in the vertical or horizontal di-

rection. Relative placement constraints are also added in the same way by using

a default minimum gap value as the separation amount. To constrain a graph

with hybrid constraints, we added an equal amount of each constraint type using

the approaches mentioned above (i.e., to constrain 75% of the nodes, we added

one type of constraint for every 25%). It should be noted that we paid attention
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not to create conflicting constraints during this process. For instance, we do not

allow both nodes in an alignment constraint to have a fixed node constraint as

well. Moreover, if the pair of nodes in a relative placement constraint also has an

alignment constraint, we assign the same direction to both constraints.

Figure 5.6 through Figure 5.8 show sample random constrained graphs gener-

ated in this manner.

5.3 Results and Discussion

The results of the experiments conducted on both real-life graphs and randomly

generated datasets show the superiority of fCoSE over CoLa in terms of both

run time performance and visual quality. A comparison of the two algorithms

in some real-life graphs, each with a domain-specific constraint set, such as the

dependency graph, the underwater wireless sensor network and the call graph

can be seen in Figure 5.1 through Figure 5.5. In each of these examples, fCoSE

runs faster than CoLa and achieves better values in terms of the quality metrics

in general.

The experiments on the randomly generated graphs were performed by re-

peating each test 5 times with a new constraint set in each run and averaging

the results. Here we should note that we can compare fCoSE and CoLa in only

small-sized graphs because of the high computational cost of CoLa that prevents

it to scale to larger graphs.

We first present the results for the compound graph dataset generated from

the Rome graphs (see Figures 5.6 through 5.8 for some examples). As expected,

fCoSE is much faster than CoLa in all constraint types in terms of run time

performance (Figure 5.10). If we look at the quality metrics, fCoSE generates

up to 27% shorter average edge lengths on the graphs with fixed node and hy-

brid constraints, while the results are comparable for the other constraint types

(Figure 5.11). fCoSE also yields 37 to 74% fewer edge crossings and 50 to 81%
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fewer node-edge overlaps in all constraint types (Figure 5.12 and Figure 5.14).

In terms of the number of node-node overlaps and total area, both algorithms

present comparable results for fixed node and hybrid constraints. For the other

constraint types, however, CoLa generates less number of node-node overlaps and

much smaller total area when compared to fCoSE (Figure 5.13 and Figure 5.15).

Our observation from these results is that CoLa tends to generate more compact

layouts at the expense of poor quality in terms of other aesthetic metrics.

We also performed experiments on the medium-sized graphs that compare

fCoSE and its base method, CoSE, to see the effect of generating a quick draft

layout on the run time performance. Results show that fCoSE runs up to 2

times as fast as CoSE in constraint-free graphs (Figure 5.16). In addition, we

observed that the run time of fCoSE on constrained graphs is also better than

the run time of CoSE on constraint-free graphs, although fCoSE loses extra time

to satisfy constraints. Our another observation is that the alignment and relative

placement constraints cause a slight increase in the run time of fCoSE while the

other constraint types decrease it, probably with the effect of fixed node con-

straints which yields faster convergence. Moreover, Figure 5.9 shows the positive

effect of generating a draft layout in Phase I of fCoSE on the layout quality, as

well as the run time, instead of directly applying CoSE algorithm from scratch.

The results for the quality performance of fCoSE on medium-sized graphs

in terms of average edge length, number of edge crossings, number of node-node

overlaps, number of node-edge overlaps and total area are presented in Figure 5.17

through Figure 5.21, respectively. An important point to notice here is that while

the ratio of alignment and relative placement constraints increases, the quality

of the layout deteriorates in terms of these metrics, because it becomes harder

to satisfy these types of constraints. On the other hand, the ratio of fixed node

constraints has a negligible effect on these metrics.

Lastly, we present the results for the denser dataset generated from the graphs

on the Network Repository website. For this dataset, we performed experiments

by constraining the graphs only with hybrid constraints (in increasing ratios)

and evaluated middle-sized graphs with only fCoSE as before. Table 5.1 shows
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that the behavior of the two algorithms is similar, in terms of both run time

and quality metrics, when compared with the results from the other datasets we

analyzed above. However, the problem with these graphs is that they are prone

to turn into “hairballs” as their densities increase, making the analysis difficult

and obsolete.
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Figure 5.1: A sample dependency graph of a JavaScript project [4] with |V | = 20,
|E| = 11 and d(G) = 1.1 where the nodes are constrained with relative placement
constraints in such a way that each target node will be on the right of the source
node while alignment constraints are also introduced for the nodes in the same
level to be aligned vertically. Sample layouts generated by (a) fCoSE and (b)
CoLa have the following performance and quality metrics (fCoSE - CoLa): run
time: 11.79 ms - 167.14 ms, average edge length: 122.19 - 113.23, number of
edge crossings: 0 - 2, number of node-node overlaps: 0 - 0, number of node-edge
overlaps: 0 - 1, and total area: 267314 - 303002 square units.
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Figure 5.2: An underwater wireless sensor network with |V | = 36, |E| = 27 and
d(G) = 1.5 where the surface buoys have fixed node constraints to keep them at
anchor positions on the surface of the water. Underwater sinks are constrained
to be in alignment with the buoys vertically. Sensor nodes in clusters have no
constraints on their positioning with the only exception that cluster heads s1, s5,
s9, s13, s17 should stay below the underwater sinks. Sample layouts generated
by (a) fCoSE and (b) CoLa have the following performance and quality metrics
(fCoSE - CoLa): run time: 12.51 ms - 369.02 ms, average edge length: 127.25 -
104, number of edge crossings: 0 - 0, number of node-node overlaps: 0 - 0, number
of node-edge overlaps: 0 - 4, and total area: 1250680 - 1447749 square units.

51



__main__

communications

socket

threading

_weakrefset

main
calls: 1

time: 0.000000s

threading.ServerSocket.start
calls: 1

time: 0.001969s

threading.ServerSocket.__init__
calls: 1

time: 0.000000s

threading.Event.isset
calls: 1

time: 0.000000s

threading.newname
calls: 1

time: 0.000000s

threading.currentthread
calls: 1

time: 0.000000s

threading.MainThread.daemon
calls: 1

time: 0.000000s

threading.Event.init
calls: 1

time: 0.000000s

threading.Event.wait
calls: 1

time: 0.001005s

threading.Condition.__init__
calls: 1

time: 0.000000s

threading.Condition.wait
calls: 1

time: 0.000000s

threading.Condition.__exit__
calls: 1

time: 0.000000s

threading.Condition.__enter__
calls: 1

time: 0.000000s

threading.Condition._is_owned
calls: 1

time: 0.000000s

threading.Condition._release_save
calls: 1

time: 0.000000s

threading.Condition._acquire_restore
calls: 1

time: 0.000000s

weakrefset.WeakSet.add
calls: 1

time: 0.000000s

(a)

__main__

communications

socket

threading

_weakrefset

main
calls: 1

time: 0.000000s

communications.ServerSocket.__init__
calls: 1

time: 0.001029s

weakrefset.WeakSet.add
calls: 1

time: 0.000000s

(b)

Figure 5.3: A sample call graph of a Python application [10] with |V | = 24,
|E| = 18 and d(G) = 1.5 where the nodes are constrained with relative placement
constraints in such a way that each target node will be below of the source node
while alignment constraints are also introduced for the nodes in the same level
to be aligned horizontally. Sample layouts generated by (a) fCoSE and (b) CoLa
have the following performance and quality metrics (fCoSE - CoLa): run time:
19.314 ms - 174.75 ms, average edge length: 169.57 - 125.32, number of edge
crossings: 0 - 2, number of node-node overlaps: 0 - 8, number of node-edge
overlaps: 0 - 14, and total area: 1191812 - 653876 square units.
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Figure 5.4: Unix family tree [11] with |V | = 41, |E| = 49 and d(G) = 2.38 where
the nodes are constrained with relative placement constraints in such a way that
each target node will be below of the source node. Sample layouts generated
by (a) fCoSE and (b) CoLa have the following performance and quality metrics
(fCoSE - CoLa): run time: 15.25 ms - 317.78 ms, average edge length: 99.37 -
101.93, number of edge crossings: 3 - 4, number of node-node overlaps: 0 - 0,
number of node-edge overlaps: 9 - 19, and total area: 579961 - 492325 square
units.
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(a)

(b)

Figure 5.5: A sample wireless sensor network [5] with |V | = 79, |E| = 156 and
d(G) = 3.94 where the nodes with fixed node constraints are shown in red. Sample
layouts generated by (a) fCoSE and (b) CoLa have the following performance and
quality metrics (fCoSE - CoLa): run time: 33.95 ms - 614.79 ms, average edge
length: 65.42 - 58.36, number of edge crossings: 5 - 12, number of node-node
overlaps: 0 - 0, number of node-edge overlaps: 2 - 9, and total area: 782448 -
623572 square units.
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Figure 5.6: A sample layout of a small-sized graph from our dataset generated
using Rome graphs (|V | = 69, |E| = 69, d(G) = 2). 50% of the simple nodes
have alignment constraints shown in red. The layout is generated in 29.5 ms
and has the following quality metrics: average edge length: 97.7, number of edge
crossings: 2, number of node-node overlaps: 0, number of node-edge overlaps: 1,
and total area: 1620261 square units.
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Figure 5.7: A sample layout of a medium-sized graph from our dataset generated
using Rome graphs (|V | = 1022, |E| = 1228, d(G) = 2.4). 25% of the simple
nodes have alignment constraints shown in red. The layout is generated in 1031.6
ms and has the following quality metrics: average edge length: 130.2, number of
edge crossings: 880, number of node-node overlaps: 29, number of node-edge
overlaps: 513, and total area: 26225364 square units.
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Figure 5.8: A sample layout of a medium-sized graph from our dataset generated
using Rome graphs (|V | = 4245,—E—=10319, d(G) = 4.86). 25% of the simple
nodes have hybrid constraints where the nodes with fixed node, alignment and
relative placement constraints are shown in red, green and yellow, respectively.
The layout is generated in 7189.8 ms and has the following quality metrics: av-
erage edge length: 85.7, number of edge crossings: 16755, number of node-node
overlaps: 785, number of node-edge overlaps: 9627, and total area: 70108183
square units.
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Figure 5.9: Comparison between fCoSE and CoSE algorithms on a randomly generated compound graph (|V | = 1525,
|E| = 1527, d(G) = 2). Draft layout generated after Phase I of fCoSE, run time: 123.4 ms (top-left). Final layout after
Phase III is applied directly on top of the draft layout for polishing, run time 175.9 ms (top-right). Same graph laid out
with CoSE, run time: 579.4 ms (bottom). Notice how the construction of a draft layout as a first step of fCoSE beautifies
the layout and makes it run faster (299.3 ms in total vs 579.4 ms) when compared to directly applying CoSE algorithm.
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(a) (b)

(c) (d)

Figure 5.10: fCoSE vs CoLa run time comparison in small-sized graphs constrained with different ratios of (a) fixed node,
(b) alignment, (c) relative placement and (d) hybrid constraints
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(a) (b)

(c) (d)

Figure 5.11: fCoSE vs CoLa average edge length comparison in small-sized graphs constrained with different ratios of (a)
fixed node, (b) alignment, (c) relative placement and (d) hybrid constraints
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(a) (b)

(c) (d)

Figure 5.12: fCoSE vs CoLa edge crossings comparison in small-sized graphs constrained with different ratios of (a) fixed
node, (b) alignment, (c) relative placement and (d) hybrid constraints
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(a) (b)

(c) (d)

Figure 5.13: fCoSE vs CoLa node-node overlaps comparison in small-sized graphs constrained with different ratios of (a)
fixed node, (b) alignment, (c) relative placement and (d) hybrid constraints
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(a) (b)

(c) (d)

Figure 5.14: fCoSE vs CoLa node-edge overlaps comparison in small-sized graphs constrained with different ratios of (a)
fixed node, (b) alignment, (c) relative placement and (d) hybrid constraints
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(a) (b)

(c) (d)

Figure 5.15: fCoSE vs CoLa total area (in 106 square units) comparison in small-sized graphs constrained with different
ratios of (a) fixed node, (b) alignment, (c) relative placement and (d) hybrid constraints
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(a) (b)

(c) (d)

Figure 5.16: fCoSE vs CoSE run time comparison in medium-sized graphs constrained with different ratios of (a) fixed
node, (b) alignment, (c) relative placement and (d) hybrid constraints
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(a) (b)

(c) (d)

Figure 5.17: fCoSE results for average edge length metric in medium-sized graphs constrained with different ratios of (a)
fixed node, (b) alignment, (c) relative placement and (d) hybrid constraints
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(a) (b)

(c) (d)

Figure 5.18: fCoSE results for edge crossings metric in medium-sized graphs constrained with different ratios of (a) fixed
node, (b) alignment, (c) relative placement and (d) hybrid constraints
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(a) (b)

(c) (d)

Figure 5.19: fCoSE results for node-node overlaps metric in medium-sized graphs constrained with different ratios of (a)
fixed node, (b) alignment, (c) relative placement and (d) hybrid constraints
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(a) (b)

(c) (d)

Figure 5.20: fCoSE results for node-edge overlaps metric in medium-sized graphs constrained with different ratios of (a)
fixed node, (b) alignment, (c) relative placement and (d) hybrid constraints
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(a) (b)

(c) (d)

Figure 5.21: fCoSE results for total area (in 106 square units) metric in medium-sized graphs constrained with different
ratios of (a) fixed node, (b) alignment, (c) relative placement and (d) hybrid constraints
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Table 5.1: Evaluation with Denser Graphs

Hybrid Constraints 25%

graph name |V | |E| d(G)
run time (sec) avg. edge length edge crossing node-edge overlap node-node overlap total area (x1M)

fCoSE CoLa fCoSE CoLa fCoSE CoLa fCoSE CoLa fCoSE CoLa fCoSE CoLa

aves-weaver-social-06 20 64 6.4 0.04 0.54 56 68 57 103 15 33 1 0 0.15 0.11
mammalia-dolphin-
social

67 159 4.7 0.06 1.53 80 141 209 409 80 156 7 2 0.65 0.86

SW-100-6-0d2-trial1 106 300 5.7 0.09 1.76 87 151 510 1032 231 319 16 3 0.92 1.11
mammalia-voles-
plj-trapping-25

166 497 6.0 0.15 21.57 70 126 733 1944 220 533 9 23 2.46 2.07

DD68 subgraph 209 454 4.3 0.12 27.87 82 158 245 1228 119 492 5 16 4.03 4.09
bio-desieasome 530 1188 4.5 0.54 - 80 - 2444 - 948 - 45 - 8.00 -
DD687 741 2599 7.0 1.05 - 109 - 11790 - 4640 - 345 - 10.88 -
DD242 1302 3305 5.1 1.36 - 89 - 4509 - 2413 - 166 - 26.84 -
lshp3446 3523 10215 5.8 4.03 - 109 - 20156 - 8767 - 538 - 57.17 -
DD6 4245 10319 4.9 6.62 - 83 - 18214 - 10836 - 996 - 60.87 -
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Hybrid Constraints 50%

graph name |V | |E| d(G)
run time (sec) avg. edge length edge crossing node-edge overlap node-node overlap total area (x1M)

fCoSE CoLa fCoSE CoLa fCoSE CoLa fCoSE CoLa fCoSE CoLa fCoSE CoLa

aves-weaver-social-06 20 64 6.4 0.03 0.37 60 96 60 123 17 39 1 0 0.13 0.18
mammalia-dolphin-
social

67 159 4.7 0.06 1.24 82 136 211 468 80 172 3 6 0.70 0.73

SW-100-6-0d2-trial1 106 300 5.7 0.09 1.18 86 184 516 1470 234 445 21 17 0.90 1.2
mammalia-voles-
plj-trapping-25

166 497 6.0 0.13 6.48 72 186 773 3179 265 787 19 58 2.03 2.51

DD68 subgraph 209 454 4.3 0.11 11.74 85 203 272 1738 138 550 10 20 4.29 4.28
bio-desieasome 530 1188 4.5 0.58 - 82 - 2679 - 1051 - 58 - 6.64 -
DD687 741 2599 7.0 0.96 - 122 - 12752 - 4275 - 309 - 9.49 -
DD242 1302 3305 5.1 1.30 - 86 - 4330 - 2097 - 119 - 26.08 -
lshp3446 3523 10215 5.8 3.8 - 108 - 21797 - 9516 - 693 - 50.57 -
DD6 4245 10319 4.9 6.41 - 90 - 22144 - 12629 - 1402 - 65.06 -
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Hybrid Constraints 75%

graph name |V | |E| d(G)
run time (sec) avg. edge length edge crossing node-edge overlap node-node overlap total area (x1M)

fCoSE CoLa fCoSE CoLa fCoSE CoLa fCoSE CoLa fCoSE CoLa fCoSE CoLa

aves-weaver-social-06 20 64 6.4 0.03 0.22 60 96 63 116 22 40 1 0 0.12 0.16
mammalia-dolphin-
social

67 159 4.7 0.06 0.97 89 184 250 633 105 204 7 15 0.73 0.90

SW-100-6-0d2-trial1 106 300 5.7 0.09 0.87 89 226 618 1595 268 452 22 28 0.83 1.24
mammalia-voles-
plj-trapping-25

166 497 6.0 0.15 11.77 77 185 926 3175 309 728 22 47 2.11 2.4

DD68 subgraph 209 454 4.3 0.14 10.26 89 220 290 2227 181 670 20 49 4.08 4.20
bio-desieasome 530 1188 4.5 0.54 - 91 - 3268 - 1273 - 79 - 7.07 -
DD687 741 2599 7.0 0.98 - 143 - 15258 - 4997 - 416 - 16.28 -
DD242 1302 3305 5.1 1.31 - 96 - 5532 - 2785 - 263 - 25.48 -
lshp3446 3523 10215 5.8 3.53 - 120 - 26511 - 10294 - 890 - 51.28 -
DD6 4245 10319 4.9 6.10 - 99 - 26560 - 13745 - 1658 - 60.22 -
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Hybrid Constraints 100%

graph name |V | |E| d(G)
run time (sec) avg. edge length edge crossing node-edge overlap node-node overlap total area (x1M)

fCoSE CoLa fCoSE CoLa fCoSE CoLa fCoSE CoLa fCoSE CoLa fCoSE CoLa

aves-weaver-social-06 20 64 6.4 0.03 0.12 68 123 57 150 30 56 3 2 0.13 0.17
mammalia-dolphin-
social

67 159 4.7 0.07 0.84 92 189 229 477 111 179 15 11 0.69 0.87

SW-100-6-0d2-trial1 106 300 5.7 0.10 0.98 98 184 739 1555 358 480 40 35 0.95 1.22
mammalia-voles-
plj-trapping-25

166 497 6.0 0.13 3.33 83 185 960 2933 327 685 24 27 2.22 2.47

DD68 subgraph 209 454 4.3 0.13 5.04 101 271 359 2870 219 754 27 53 4.04 4.12
bio-desieasome 530 1188 4.5 0.55 - 103 - 4045 - 1492 - 118 - 6.79 -
DD687 741 2599 7.0 1.05 - 126 - 15312 - 5050 - 368 - 10.57 -
DD242 1302 3305 5.1 1.30 - 98 - 5889 - 2944 - 281 - 25.02 -
lshp3446 3523 10215 5.8 3.68 - 123 - 28044 - 10742 - 992 - 49.71 -
DD6 4245 10319 4.9 6.18 - 99 - 26084 - 13472 - 1479 - 60.87 -

Graphs with |V | > 500 are evaluated with only fCoSE since Cola does not scale well to larger graphs.
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5.4 Extensibility and Limitations

While fCoSE tries its best to support some soft constraints such as avoiding node-

node overlaps or keeping child nodes inside the boundaries of their corresponding

parent nodes, it has full support for the fixed node, alignment and relative place-

ment constraints as mentioned in detail previously. The supported constraint

types can be easily increased either by using the current constraint set or by

adding support for new constraint types. For example, an orthogonal placement

of the nodes can be satisfied by specifying a proper combination of alignment

and relative placement constraints. A new constraint type can also be easily in-

tegrated as long as it is enforced in Phase II of the algorithm since maintaining it

in the last phase is straightforward. For instance, the user can define an arbitrary

region in the drawing canvas so that the layout of the graph should stay within

the boundaries of that region. In that case, nodes are first enforced to be inside

that region in Phase II and then they are allowed to move in a such way that they

will not cross the boundaries of the region in the last iterative phase. Another

possible improvement for the algorithm would be to allow separating nodes with

an exact amount as opposed to a minimal value while defining relative placement

constraints. Achieving it requires slight changes in Phase II where we place nodes

to satisfy the separation amount and then we can treat the pair as a block during

the movements in the last phase.

Since fCoSE is a combination of spectral and force-directed approaches, it suf-

fers from the limitations of both, while the latter one is more dominant as it is

applied last. Such limitations include not dealing with the edge-edge crossings or

not trying to use the drawing area efficiently. On top of these inherited limita-

tions, the algorithm’s effort to support user-specified placement constraints makes

obtaining a good layout more difficult, which is already an NP-hard problem [14].

An important limitation of fCoSE is to support user-defined constraints only on

simple nodes, not on compound nodes. Adding constraint support for compound

nodes is a challenging issue because a constraint in the positioning of a compound

node may lead to violation of already satisfied constraints on its children nodes

and vice versa.
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Chapter 6

Conclusion and Future Work

In this thesis, we have presented a new, fast compound graph layout algorithm

named fCoSE that also supports commonly used user-specified placement con-

straints in real-life graphs. fCoSE gets its speed from spectral layout approaches

while presenting aesthetic results with the help of force-directed algorithms. It

first produces a draft layout with the help of a spectral approach, then enforces

placement constraints by using some heuristic methods and finally polishes the

layout via a force-directed compound graph layout modified to maintain enforced

constraints. Our experiments show that fCoSE is suitable to be used in interactive

graph visualization and analysis applications that support small to medium-sized

graphs, with its superiority over its competitors in both run time performance

and commonly accepted aesthetic criteria.

As the future work, additional constraint types can be added such as contain-

ment constraint where some nodes are restricted to a specific region or a circle

constraint where some nodes are positioned in such a way that they will form

a circle. Furthermore, fCoSE currently allows constraints to be defined only on

simple nodes. Adding constraint support for compound nodes can be considered

in the future as such a feature will be useful in many application areas including

visualization of biological networks. Moreover, fCoSE simply selects the simple

node with the minimum degree while connecting disconnected components and
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selecting representative nodes for compound nodes in the preprocessing step. A

more deliberate approach can be used for these selection processes for a possible

improvement in the quality of the draft layout. Lastly, a possible improvement in

the quality of the layout with alignment constraints can be achieved by allowing

aligned nodes to change the order in the polishing phase with swaps to further

relax the underlying system.

An open-source implementation of fCoSE is available as a GitHub repository:

https://github.com/iVis-at-Bilkent/cytoscape.js-fcose.

Randomly generated compound graph dataset and test scripts can be found

on test-assets branch of the same repository: https://github.com/iVis-at-

Bilkent/cytoscape.js-fcose/tree/test-assets.

A demo page is availabe to try out the layout interactively: https://ivis-at-

bilkent.github.io/cytoscape.js-fcose/demo/demo-constraint.html.

A series of videos showing fCoSE in action is available as a playlist in YouTube:

https://youtube.com/playlist?list=PLJA9bycrwfaCK6gkAMIQ8OPp−k2NOi2H.
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